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Abstract. Expeditious modeling of virtual urban environments has many appli-
cations but typically suffers from requiring intensive trial and error to determine
reliable generation rules or lacking complete data to input the procedural mod-
eling. Using optimization algorithms it is possible to automate the parametriza-
tion of production rules and estimate missing data. This paper presents a hybrid
heuristic optimization algorithm developed to solve parameterization problems
with mixed discrete and continuous parameter types as a viable solution in a ne-
glected field of application, presenting a successful application in a real scenario
and competitive results in performance tests under a standard batch of non-convex
non-linear continuous parameter functions.

1 INTRODUCTION

The modeling of virtual urban environments has many different applications includ-
ing virtual city tours [1], location based services [2], cultural heritage preservation [3]
[4] and urban planning. There is a high demand for realistic or semi-realistic models of
cities, however, modeling these environments using standard 3d modeling tools by hand
grows problematic in terms of required expertise and available time. Expeditious mod-
eling solutions have grown in demand [5] to automate or simplify some of the complex
modeling process, either by acquiring and interpreting graphical information [6] [7] [8]
or by the use of production rules to generate procedural models [9] based on limited ge-
ographically referenced data. Certain expeditious urban modeling systems use adapted
L-System [10] [11] principles to define sets of production rules capable of modeling all
kinds of urban environment elements [12].

The procedural modeling rules used in these systems are often complex, fine tun-
ing the parameters can become very difficult even with domain knowledge available. In
this regard, the artificial intelligence fields of stochastic optimization and evolutionary
computation can greatly assist to develop or embed systems capable of determining the
optimum parameter combination for different types of combinatorial problems, improv-
ing expeditious modeling systems to reach a higher standard of automation, reliability
and realism.

As an example, it often occurs that it is impossible, very troublesome or highly cost-
ineffective to acquire complete accurate data for an entire city we are trying to model.



However it is often possible, and relatively accessible to gather information from certain
key-defining areas within the city and assign the data to a geographically referenced
database. Production rules can be optimized and calibrated with the data collected to
generate models resembling this area of gathered information. Such production rules
can then be reapplied on areas of similar characteristics or more limited information in
order to estimate data that generates more realistic models.

The purposed methodology is the development of a hybrid meta heuristic algorithm
capable of calibrating parameters of typical procedural modeling rules. Combinatorial
problems in this specific area can vary significantly in type and complexity, in this sense
a hybrid and reconfigurable system was considered to be a more logical approach to en-
sure the system could be adapted to solve any type of black box problem with parameter
inputs of discrete and continuous nature alike. Preliminary work on this methodology
by the authors has been presented at the International Conference on Informatics, Con-
trol, Automation and Robotics 2008 [13]3 and might be worth consulting.

This paper is divided in four sections: the first serving as an introduction, the second
describing the theory behind the developed system, its architecture and performance
comparison. The third section presenting an application of the system in the real world.
The fourth some conclusions on the work and ideas for future development.

2 HYBRID HEURISTIC OPTIMIZATION ALGORITHM

Meta heuristic stochastic optimization algorithms [14] can be somewhat generically
divided by some authors in two generic families: local search (LS) and population based
(PB). LS algorithms such as random search, hill climbing [15], tabu search [16] and
simulated annealing (SA) [17] [18], typically focus on analysing a set of constrained
neighborhood solutions iteratively gathered around the best solution found so far, the
iterative process repeats until a certain criteria is met. PB algorithms such as real coded
genetic algorithms (RCGA) [19] [20] [21], harmony search (HS) [22] [23], particle
swarm [24] and ant colony based [25] optimization all typically function by keeping in
memory a family of solutions and iteratively creating new generations to be analysed.
Most LS and PB methods can outperform each other given a specific type of problem.
A careful balance is required in selecting the most fitting algorithm and its optimum
configuration to match the problem at hand to avoid common pitfalls in determining the
global optimum with the least amount of required iterations.

More recent approaches from evolutionary computing [26] present optimization al-
gorithms focused on self-adaptation with acclaimed results such as the Covariance Ma-
trix Adaptation Evolution Strategy (CMA ES) introduced by Nikolaus Hansen [27].
These ES algorithms are great semi-automated self-adapting solutions for solving multi
dimensional non-linear non-convex local optimization problems, even in rugged search
space global optimization and multi-objective problems [28].

There is a strong tendency towards reducing the configuration complexity of heuris-
tic algorithms. While some industry applications welcome the advantages, others do not

3 a revised version of the paper is also available for download at the authors website with im-
proved results obtained by correcting an implementation bug of the presented algorithm



entirely benefit from self-adaptation. In practical terms hybrid and reconfigurable im-
plementations of different optimization algorithms can still hold a high value in the
industry due to their capacity to easily reconfigure and adapt, following user expe-
rience, to specific traits of different black box problems. In many self-adaptation al-
gorithms user reconfiguration can often be layered with added complexity, and long
algorithm adaptation times unnaceptable. In response, algorithms with higher config-
uration complexity can be trained under hyper heuristics to enable more competitive
performance, in this sense resembling embedded self-adaptation behavior. Some au-
thors claim highly configurable heuristics transform the problem of parameterizing the
function into a problem of parameterizing the heuristic. In practical terms there is a
trade off between attaining the knowledge required to parameterize the heuristic system
with acceptable results, and attaining the knowledge to understand a black box system.

A different approach methodology that could be applied to solve optimization prob-
lems is refered to Constraint Logic Programming (CLP) or simply Constraint Program-
ming (CP) [29] [30]. CP is a programming paradigm where relations between variables
are stated in the form of constraints on variables over a given domain. A solution for
a Constraint Satisfaction Problem using CP is an assignment of a value to each of the
variables that satisfies all the problem constraints. CP is typically used for solving de-
cision problems but can also be extended to solve optimization problems by defining
an evaluation function that maps the problem variables into a real value. The optimiza-
tion process consists in a process that, after achieving a given valid solution, posts a
new constraint stating that a new solution must have a higher/lower value (maximiza-
tion/minimization problems) that the one previously achieved. It was not researched
further as a viable solution for expeditious modeling parameterization due to personal
decisions related to lack of experience with the methodology and time constraints. Its
level of applicability in this specific, and somewhat neglected, field might be worth re-
searching in future projects. However CP is typically more tailored for solving decision
problems and not optimization problems like the ones analyzed on this paper.

The presented hybrid heuristic optimization algorithm combines traits of RCGA,
SA and HS configurable to match the behavior of some of these methods and also
double as a hyper heuristic to find its own best configuration for the problem to solve if
required. Some academics might also find some traits of Particle Swarm Optimization
[24].

A brief description of the algorithms combined in the hybrid approach follow.

2.1 Simulated Annealing

SA is inspired by the natural process of annealing of metallurgic materials. A slower
cooling process would typically originate stronger ligaments than by rapid cooling pro-
cess. This is explained at an atomic level by the fact that slower cooling allows larger
elements to arrange them selfs in a more efficient configuration before the remaining
elements connect around them. Generating a tighter configuration with stronger con-
nections.

The algorithm was first presented by Kirkpatrick [17] originating from an adaptation
of the Monte Carlo methodology applied to thermodynamic systems that would become
referred as the Metropolis-Hastings algorithm [31]. Kirkpatrick, Gelatt and Vecchi [17]



defined SA as a meta heuristic algorithm that would search new neighboring solutions
of the combinatorial problem and accept them based in the formula from Equation 1.

p(∆f, T ) =
{

e
−∆f

T ∆f ≤ 0
1 ∆f > 0

(1)

The stopping criteria for SA is usually passing a certain temperature threshold, given
that the temperature value T decreases on each passing iteration by a certain rate which
can be variable to better fit the specific problem. The probability of accepting a solution
of lower quality decreases with the temperature. This process gives room for solutions
to wander through a wider range of the search space during initial iterations and slowly
reduce that wandering capacity, turning the algorithm into a standard hill climbing in
the final iterations. This behavior helps avoiding a typical flaw where the optimization
process gets stuck in a local optimum neighborhood.

The downside of SA is the inability to guarantee that a global optimum, instead
of a local optimum, can always be reached or how many iteration steps it can take to
guarantee it. These questions highly depend on the complexity of the problem and the
linear dependency between the parameters and the quality function. The temperature
descent ratio is also required to be fine tuned paying special attention to the character-
istics of the problem. Uncareful parameter tuning can easily affect the performance of
the algorithm, reducing it to the same of a basic hill climbing implementation.

Some authors have achieved higher performance by combining implementations of
SA with the previously described tabu search (TS) algorithm. The work of Mishra [32]
for instance is a good example of a successful application.

2.2 Real Based Genetic Algorithm

Genetic Algorithm is the name given to the nature inspired system based on the Dar-
winian concept of the survival of the fittest, where each solution to our combinatorial
problem is uniquely encoded and part of a group or family of solutions which evolves
by each passing generation. The individual solutions are crossbred and mutated to give
birth to new generations of solution families sharing traits with the originalparent fam-
ily of solutions. Original reference to this algorithm dates back to the work of Holland
in 1975 [19]. A more modern reference can be found in the work of Goldberg [21].

Several implementations of the algorithm exist. Most implementation found in the
literature follow the original concept of binary encoding and elitist selection of each
new generation. The standard implementation refers to the problem’s parameters being
encoded into a binary dna string. Each possible parameter combination - our solution
- is defined by a unique dna string which can be crossbred with other dnas or mutated
alone to generate new dna solutions, yielding composite traits from the parents. There
are quite many variants to the algorithm referring many possible ways to crossbreed the
binary encoded solutions and the influence of the mutation factor in different types of
problems.

A comparatively recent and quite interesting approach to the original genetic algo-
rithms concept is the so called real-value (also referred to as real coded or real based)
variation of the algorithm, handling continuous parameters, where the parameters no



longer constitute a binary dna, instead they are stored in a vector, but the standard ge-
netic algorithmic steps of parent selection, cross breeding, mutation and validation still
take place.

Real based genetic algorithms have been taking a strong interest in the past decade,
the hand book of genetic algorithms by Davis [33] contains a good general reference
and some new developments to the work on this area made by Michalewicz [20]. Addi-
tionally, the work of Arumugama [34] is worth consulting for some information regard-
ing new real based cross breeding techniques and their comparative work. Also worth
mentioning are a couple of new real based cross over and mutation operands presented
under the work of Deep and Thakur [35].

2.3 Harmony Search

Harmony Search (HS) is a fairly recent meta heuristic algorithm. It takes it’s principle
from musician improvisation sessions where musicians try different note combinations
to find the best melody. It’s theory and industry applications are fairly well documented
in the literature by Geem [36], Lee [22] and Mahdavi [23].

HS is applicable to problems handling discrete and continuous variables alike, fit-
ting a middle range of applicability where most meta heuristic algorithms can only
handle discrete values and gradient-based mathematical algorithms can only be applied
to continuous variables.

The algorithm works by initializing a random population of possible vector melody
solutions, each solution is a combination of notes under a certain possible range. The
algorithm uses a probability threshold to decide if part of the new solution vector is
copied from previous memory of good performances or instead randomly improvised.
Additionally, each note can have it’s pitch slightly randomly adjusted, within a certain
pitch bandwidth, depending on another probability threshold. Improved solutions are
kept in memory and the process is repeated a certain number of iterations.

Some implementations of the HS algorithm vary the threshold probabilities or the
pitch bandwidth during the iterative process to condition the algorithm into a simulated
annealing alike behavior. Depending on the characteristics of problem, this variation can
be very effective in providing improved results over the standard HS implementation.

2.4 Architecture Overview

The system was developed to solve generic black box expeditious modeling problems.
The requirements include: handling the input of boolean, integer and real based param-
eters; being configurable by XML4; supporting hyper heuristic recursivity. As shown
on Figure 1 the foundations of the optimizer rely on a population based system with
basic principles of RCGA. There are two families resident in memory at all times, these
are referred to as the originalparent family and the toplist family. The size of either of
these families can be configured by XML to adapt the hybrid meta heuristic to the com-
plexity of different problem types. Each new generation is obtained by cross-breeding
the originalparent family with a chosen member of the toplist family.

4 following markup language standards to represent our configuration data can enable higher
interoperability with other expeditious modeling systems and invocation by script languages



Fig. 1. Optimizer architecture.

2.5 Thresholds

There are several thresholds present that incorporate Monte Carlo [31], HS and SA
ideologies in the algorithm. We refer to the term globalentropy as a ratio (3) that will
induce different levels of anarchy in the algorithm as it increases slightly every genera-
tion. Some of these thresholds determine the probability of having an entirely random
(4) or partially random new solution (4).

globalentropy = iterationstep/maxsteps (2)
rand() ∗ globalentropy < trns : randSol() (3)

rand() ∗ globalentropy < trnt : randType() (4)

Another kind of threshold referred to as toplist dispersion (6) defines the dispersion
range of the toplist available for crossbreeding, this can be be comparable to the roulette
wheel parent selection operator of RCGA. One other threshold referred to as value
dispersion (6) defines the percentage of influence the toplist parent (tlv) has on the
crossbreeding process with the original parent (orv). This process can be comparable
to a hybrid version of the RCGA operands of average convex cross over and direction



based cross over [33].

victim = (rand() ∗ ttld ∗maxFamilySize) (5)
newvalue = (ttvd ∗ orv) + ((1− ttvd) ∗ tlv) (6)

Other thresholds are present to determine the probability of influence of a directional
vector from the toplist on the breeding process (13), similar to many mathematical
gradient based implementations and recent optimizations to the acclaimed CMA-ES
[27]. One other threshold (10) determines the jittering scope of the crossbreed value,
similar to the pitch adjustment of HS and several RCGA mutation operands described
in the literature.

scope = ‖(orv − tlv)‖ (7)
igl = (1.0− globalentropy) (8)

ttvss = ttvss ∗ ttvsv ∗ igl (9)
range = MaxParamV alue−MinParamV alue (10)

scope < ttvss ∗ range : maxscope = range ∗ ttvsv (11)
scope > ttvss ∗ range : maxscope = scope ∗ ttve (12)

maxscope = scope ∗ rand() (13)
newvalue = newvalue + scope− (maxscope/2) (14)

The threshold ttvsv (12) has a small effect on the jittering of the final solution which
might only be worth fine tuning in very rare cases. For most of the tested development
of the algorithm its value has been default to globalentropy.

Each of these thresholds can be configured (referred to as as toggles) to have a con-
stant value or to follow a dynamically changing function. There are several of these
different functions implemented into the system, each of them programmed to progress
from a value of zero in the starting iteration to a value of one in the final iteration step.
The most basic available function is the linear descent (globalentropy). Other avail-
able functions are adaptations of log and sin functions. Also available are the inverse
functions of each of them.

The advantages of having a hybrid system with many thresholds to configure and
multiple toggles to switch is the capacity of reusing the same system with many differ-
ent type of algorithmic behavior configurations. The different configurations emulate
different standard algorithm without having to embed complex libraries or several third
party implementations of the usual algorithms to test which might work best for each
type of problem.

A disadvantage of having many thresholds and toggles lies in the requirement to
always reconfigure the system for good performance depending on the problem. Users
with a lack of experience, internal knowledge or attention to detail can very well be
replacing the original parameterization problem by another, the parameterization of the
heuristic that can solve that problem faster. This raises questions that the heuristic sys-
tem should be automated, following the research tendency of evolution strategies [26]
towards self adaptation. Self automated systems are harder to implement and predict



results, the extra function evaluation time required for the adaptation to reach the op-
timum is also often an unacceptable trade off. Expert configuration of a non adaptive
heuristic system can still often deliver faster results.

2.6 Performance Tests

It is imperative to note that despite the effort directed to ensure competitive perfor-
mance under standard non-convex non-linear problems of continuous nature, the hybrid
system presented in this paper was not at all aimed to outperform any of the state of
the art optimization algorithms. The system was developed as a lightweight, portable,
reconfigurable and flexible prototype to embed in expeditious modeling systems. As
previously stated, expeditious modeling systems have additional requirements beyond
performing competitively against pre-defined sets of non-convex non-linear problems
of continuous nature. Expeditious modeling optimizer systems are required to equally
assist competitively in solving problems of different type and complexity, with mixed
discrete and continuous parameters. Overall, the system was aimed to provide a solution
capable of performing both the bluntly configured short iteration phases aimed to deter-
mine generic guidelines to solve an optimization problem, and the extremely fine tuned
configuration for long run convergence for obtaining the global optimum of complex
problems.

Regardless of these requirements, the performance of the system was tested against
some of the standard batch of non-convex non-linear continuous problems from the
IEEE Congress on Evolutionary Computation 2005 [37]. The algorithm was over fitted
for one of the standard problems, the Rosenbrock, at D = 10 dimensions5 and then
tested on the Sphere, Schwefel 1.2, Rosenbrock, Rastrigin and Weierstrass at D = 10
and D = 30.

The average results for 25 runs of each problem can be consulted in Table 1. The
first column shows the name of the problem tested while the following the average
from 25 runs, at steps 2% 40%, 80% and 100% of the optimization process, the final
column the standard deviation of the final result gives a good indicator at how spread
the 25 solutions were from the average value. The first 5 problems were executed at
D = 10, with a generation of 10, executing 10∗105 function evaluations, the last 5 were
executed at D = 30, with a generation of 30, executing 30 ∗ 105 function evaluations.
The original CEC’05 Special Session on Real-Parameter Optimization [37] consisted of
benchmarking 11 algorithms each optimizing 25 different test functions under D = 10
and D = 30. Measuring which ones would solve the given problems under the target
precision error of 10−8 under each function for D ∗ 105 function evaluations.

The presented table does not relate directly to the results obtained from CEC’05
session [27] but analysing those results and comparing them to the performance of our
algorithm allows us to conclude that despite our hybrid performing quite below the state
of the art, it has an acceptable performance optimizing non-convex non-linear types of
problems.

5 all global optimization problems from the batch have been specifically developed as a calculus
sum of finite dimensions. increasing the number of dimensions exponentially increases the
complexity of the problem



Table 1. Average quality function at different stages of the convergence.

problem 2% µ 40% µ 80% µ final µ final σ

Sphere 2.880249e+004 5.069603e-007 7.443773e-010 2.746327e-016 1.389618e-016
Schwefel 1.2 4.834547e+005 3.512164e-006 6.751018e-009 1.194683e-015 4.648368e-016
Rosenbrock 3.028539e+010 1.190515e+003 3.619151e-002 3.720837e-005 1.161202e-004
Rastrigin 1.533455e+002 3.236556e-005 9.360353e-008 3.327253e-014 1.758198e-014
Weierstrass 1.463048e+001 2.082120e-001 4.062040e-002 2.013143e-002 9.980064e-002
Sphere 1.133168e+005 7.510152e-005 7.610557e-008 5.908891e-012 3.502260e-012
Schwefel 1.2 2.520423e+007 1.522236e-002 1.362870e-005 6.535891e-010 2.939757e-010
Rosenbrock 1.412603e+011 4.283153e+002 9.933642e+000 3.956425e+000 1.151809e+001
Rastrigin 5.652055e+002 7.956591e-001 8.582548e-006 6.416542e-010 3.106761e-010
Weierstrass 4.915724e+001 1.468030e+000 4.400829e-001 1.226722e-001 1.910961e-001

3 EXPEDITIOUS MODELING

An example application of an expeditious modeling problem which the hybrid heuristic
system can solve is the estimation of corrupt or unavailable data. A specific test case was
prepared using the XL3D modeler 6 [38]. The test case involved the parameterization of
production rules to determine missing height values from a set of buildings. Expeditious
modeling systems typically require a geographically referenced database of the model
and a set of rules. These modeling rules generate the geometry of the model according
to the referenced data.

In our specific test case the known information for each building included the val-
ues of the perimeter, area and its bottomzvalue 7. To model a building we also require
to know its height, which is missing data from our database. An extra modeling rule
estimates the height of a building, conceptually implying a possible relation between
the height and the building’s perimeter (15), area (16), and bottomzvalue (17). An addi-
tional variable avgz (18) refers to the average z value of each building from the set. The
applied formula is described mathematically in Equation (19).

ap = (crp− 1) ∗ fcp ∗ perimeter (15)
av = (cra− 1) ∗ fca ∗ area (16)

ab = (crb− 1) ∗ fcb ∗ bottomzvalue (17)
avgz = bottomzvalue + averageheight (18)

topzvalue = avgz + disp ∗ (ap + av + ab) (19)

The formula has a total of 7 unknown fields to be parametrized:

- disp ∈ [0.0..1.0], the dispersion rate from the average height;
- crp ∈ [0..3], perimeter correlation signal;
- cra ∈ [0..3], area correlation signal;
- crb ∈ [0..3], bottomzvalue correlation signal;
- frp ∈ [0.0..1.0], perimeter correlation factor;

6 an expeditious modeling system based on L-Systems applied to modeling urban environments
7 the height of the base of the building



- fra ∈ [0.0..1.0], area correlation factor;
- frb ∈ [0.0..1.0], bottomzvalue correlation factor.

It is important to note that this is a simple empiric attempt to determine a sense of a
possible correlation. Clearly the features of all buildings would not ever follow this
exact relational formula, and in this sense, more accurate formulations could be easily
written by professionals with architectural background and local domain knowledge,
to obtain better results. This formula is merely a demonstration that even basic tests
with crude relational formulas can greatly assist in the estimation of realistic values for
expeditious modeling, allowing the application of a more sensible methodology over
common trial and error methods.

In this specific test a very small data set area was collected from half a dozen typical
buildings in a corner of Rua do Almada in the city of Porto. This data was used to deter-
mine our avgz and calibrate the production rules. The function that measured the quality
of the modeling rule compared the height differences of the buildings with known val-
ues and their procedural formula estimation counterpart. A minimization process was
applied in two phases of short iteration steps. The first phase with a large originalparent
family size to find the best correlation signals for the system, the second with a shorter
family size to find the global optimum under those correlation signal constraints.

On the left side of Figure 2 we can see a satellite overview image of the actual area
obtained from Microsoft Visual Earth8, on the right side the rendered model screenshot.
The buildings in grey are rendered with real height values, while the buildings in red
were rendered by applying the calibrated modeling rule estimating an height value.
After having calibrated the parameters of the height estimation rule, it may be applied

Fig. 2. Comparative images of Rua do Almada calibration area.

to other sections of the city with similar housing characteristics. This process requires

8 http://maps.live.com



some attention to problems of over-fitting the calibration zone. In Figure 3 we have a
different section of Rua do Almada, with buildings that resembles the characteristics of
the small calibration area. On the left we have the Microsoft Visual Earth overview, on
the right the generated model, all buildings generated using the previously calibrated
height estimation rule:

avgz + 0.15623 ∗ (0.26615 ∗ area)

Comparing the images and analysing the models, it is obvious that the estimated height

Fig. 3. Comparative images of Rua do Almada generated area.

from some of the buildings does not match the real height. However, a large percentage
of the buildings does present an acceptable realism. We can conclude that the process is
far from being perfect. Better selection criteria for estimated modeling rules and atten-
tion to standard over-fitting calibration problems could easily be added to significantly
improve these results.

The proposed methodology does not completely solve the problem but does offer a
good ground work alternative, considerably useful for problems where accurate data or
expert modeling assistance is unavailable to generate a realistic environment in a short
period of development time.



4 CONCLUSIONS AND FUTURE WORK

Different methods can be applied to determine adequate production rules for expedi-
tious modeling systems, ranging from simple empirical definitions to observing 3D
modelers creating objects. Fine tuning the parameters of these production rules is a big
problem requiring domain knowledge, attempting to fine tune them by trial and error is
unwanted.

An hybrid heuristic optimization algorithm was developed to assist in automatic
parameterization for expeditious modeling of virtual urban environments. The system
is a hybrid version of RCGA with significant traits of SA and HS and was developed
to solve black box type of global optimization problems that require boolean, integer
and float type of input parameters. The algorithm was not developed to out perform
the state of the art non-convex non-linear optimization algorithms but tests with the
standard batch of problems from CEC’05 proved an acceptable performance under the
problems of continuous nature.

The system was applied to a real test case scenario in an expeditious modeling sys-
tem. The test case aimed to determine the optimum parameter combination of certain
productions rules through comparing modeling results with values from real data. The
calibrated production rules were then applied to other areas of similar characteristics
and successfully generated realistic urban models. This test case despite its relatively
low complexity, successfully demonstrated some of the potential of the developed sys-
tem.

There are many applications of the proposed system, its reconfigurability and archi-
tecture were developed with special attention to the multiplicity of global optimization
problems that appear in expeditious modeling. As such, it would be interesting to ob-
serve the performance of the system operating under more complex test cases than the
one documented in this paper.

Clustering problem types and applying hyper heuristics to define the optimum con-
figurations of the hybrid heuristic for each problem class could be a useful addition to
the system.

Other application ideas are to expand the system to an interactive feedback method-
ology where the system would not determine the quality fitness of each solution auto-
matically but instead allow interactive selection, common to many generative compu-
tation applications. This would complicate the fine tune process of certain parameters
with quantifiable solution quality but at the same time allow a certain creative freedom
with more applications. The more obvious one would be assisting to define constraints
for parameters with undeterminable quality fitness functions, this could be due to a lack
of knowledge on the production rules or an incapacity to measure quality improvements
mathematically. Another application would be in exploring the capacities of the produc-
tion rules, there can be scenarios in expeditious modeling where the user could warrant
something different but do not quite know exactly what should be different until they
can see it taking form. In these cases, interactive selection as a way to determine the
quality of the solutions, would be a valuable addition.

Acknowledgements. The authors would like to thank DEI/FEUP and LIACC for the
funding to publish and present this work.



References

1. Schilling, A., Coors, V.: Generation of vrml city models for focus based tour animations. In:
Proceeding of the Eighth International Conference on 3D Web Technology, Web3D 2003,
Saint Malo, France. (2003) 39–48

2. Ito, H., Teh, S., Nakanishi, H., Tagawa, T.: Design and implementation of 3d interface for
digital city. In: Electronics and Communications in Japan (Part III: Fundamental Electronic
Science), number 6. Volume 88. (2005) 60–68

3. Hildebrand, A., Dahne, P., Seibert, F., Christou, I., Demiris, A., Diorinos, M., Ioannidis, N.,
Almeida, L., Diogo, A., Weidenhausen, J.: Augmented reality based system for personalized
tours in cultural heritage sites. In: International Conference of Augmented Reality, Virtual
Environments and 3D Imaging Proceedings. (2000)

4. Zach, C., Klaus, A., Bauer, J., Konrad, K., Grabner, M.: Modeling and visualizing the cul-
tural heritage data set of graz. In: Proceedings of the 2001 Conference on Virtual Reality,
Archeology, and Culture Heritage. (2001) 219–226

5. Wonka, P., Wimmer, M., Sillion, F., Ribarsky, W.: Instant architecture. In: Proceedings of
ACM SIGGRAPH 2003 / ACM Transactions on Graphics. Volume 22., ACM Press (July
2003) 669–677

6. Shlyakhter, I., Rozenoer, M., Dorsey, J., Teller, S.: Reconstructing 3d tree models from
instrumented photographs. In: IEEE Computer Graphics and Applications, number 3. Vol-
ume 21. (2001) 53–61

7. Faugeras, O., Laveau, S., Robert, L., Csurka, G., Zeller, C.: 3-d reconstruction of urban
scenes from sequences of images. In: Rapport de Recherche 2572, INRIA (1995)

8. Pollefeys, M., Proesmans, M., Koch, R., Vergauwen, M., Gool, L.: Acquisition of detailed
models for virtual reality. In: Virtual Reality in Archaeology. Volume 843., BAR Inter-
national Series, CAA, Archaeopress, publishers of British Archaeological Reports (1998)
71–77

9. Muller, P., Wonka, P., Haegler, S., Ulmer, A., Gool, L.: Procedural modeling of buildings.
In: Proceedings of ACM SIGGRAPH 2006 / ACM Transactions on Graphics. Volume 25.,
ACM Press (2006) 614–623

10. Lindenmayer, A.: Mathematical models for cellular interaction in development, parts i and
ii. In: Journal of Theoretical Biology. Volume 18. (1968) 280–315

11. Prusinkiewicz, P.: Graphical applications of l-systems. In: Proceedings of ACM SIGGRAPH
1986, ACM Press (1986) 247–253

12. Parish, Y., Muller, P.: Procedural modeling of cities. In: Proceedings of ACM SIGGRAPH
2001, ACM Press (2001) 301–308

13. Cruz, F., Coelho, A., Reis, L.: Automatic parameterization for expeditious modelling of
virtual urban environments: A new hybrid meta heuristic. In: Proceedings ICINCO 2008.
(2008)

14. Russel, S., Norvig, P.: Artificial Intelligence: A modern approach. 2nd edn. Prentice-Hall
(2003)

15. Jacobson, S., Yucesan, E.: Analyzing the performance of generalized hill climbing algo-
rithms. In: Journal of Heuristics, number 4. Volume 10., Hingham, MA, USA, Kluwer Aca-
demic Publishers (2004) 387–405

16. Gendreau, M.: An introduction to tabu search. In: Handbook of Metaheuristics. Series:
International Series in Operations Research and Management Science, Chapter 2, Kluwer
Academic Publishers (2003) 37–54

17. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimizing by simulated annealing. In: Science 4598.
Volume 220. (1983)



18. Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Search Methodologies, Springer
(2005) 187–210

19. Holland, J.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence. MIT Press (1992)

20. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer-
Verlag (1994)

21. Goldberg, D.: The Design of Innovation: Lessons from and for Competent Genetic Algo-
rithms. Addison-Wesley, Reading, MA (2002)

22. Lee, K., Geem, Z.: A new meta-heuristic algorithm for continuous engineering optimiza-
tion harmony search theory and practice. In: Computational Methods Applied Mechanical
Engineering. Volume 194. (2005) 3902–3933

23. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for
solving optimization problems. In: Applied Mathematics and Computation 188. (2007)
1567–1579

24. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Neural Networks, 1995. Pro-
ceedings., IEEE International Conference on. Volume 4. (1995) 1942–1948

25. Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di
Milano, Italy (1992)

26. Eiben, A., Schoenauer, M.: Evolutionary computing. In: Information Processing Letters.
Volume 82. (2002) 1–6

27. Hansen, N.: The cma evolution strategy: a comparing review. In: Towards a new evolutionary
computation. Advances on estimation of distribution algorithms, Springer (2006) 75–102

28. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization.
In: Evolutionary Computation, number 1. Volume 15., MIT Press (2007) 1–28

29. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc. (2003)
30. Apt, K.: Principles of Constraint Programming. Cambridge University Press (2003)
31. Metropolis, N., Ulam, S.: The monte carlo method. In: Journal of the American Statistical

Association, number 247. Volume 44. (1949) 335–341
32. Mishra, N., Prakash, M., Tiwari, R., Shankar, F., Chan, T.: Hybrid tabusimulated annealing

based approach to solve multi-constraint product mix decision problem. In: Expert Systems
with Applications 29. (2005)

33. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold (2001)
34. Arumugama, M., Raoa, M., Palaniappanb, R.: New hybrid genetic operators for real coded

genetic algorithm to compute optimal control of a class of hybrid systems. In: Applied
Software Computing 6. (2005) 38–52

35. Deep, K., Thakur, M.: A new mutation operator for real coded genetic algorithms. In:
Applied Mathematics and Computation. Volume 193. (October 2007) 211–230

36. Geem, Z., Kim, J., Loganathan, G.: A new heuristic optimization algorithm: Harmony
search. In: Simulation 2. Volume 76. (2001) 60–68

37. Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., Tiwari, S.: Problem
definitions and evaluation criteria for the cec 2005 special session on real-parameter opti-
mization. Technical report, Nanyang Technological University, Singapure (2005)

38. Coelho, A., Bessa, M., Sousa, A., Ferreira, F.: Expeditious modeling of virtual urban envi-
ronments with geospatial l-systems. In: Computer Graphics Forum, number 4. Volume 26.
(2007) 769–782


